百科知识 位置:首页>知识大全>知识百科>百科知识>《什么是等差数列 等差…》正文

什么是等差数列 等差数列是什么

学习啦【百科知识】 编辑:谢君 发布时间:2016-08-27

  等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?以下是由学习啦小编整理关于什么是等差数列的内容,希望大家喜欢!

  什么是等差数列

  等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

  例如:1,3,5,7,9……2n-1。

  通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。

  前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。

  注意:以上n均属于正整数。

  等差中项

  等差中项即等差数列头尾两项的和的一半。但求等差中项不一定要知道头尾两项。

  等差数列中,等差中项一般设为A(r)。当A(m),A(r),A(n)成等差数列时。

  A(m)+A(n)=2×A(r),所以A(r)为A(m),A(n)的等差中项,且为数列的平均数。并且可以推知n+m=2×r。

  且任意两项a(m),a(n)的关系为:a(n)=a(m)+(n-m)*d,(类似p(n)=p(m)+(n-m)*b(1),相当容易证明

  它可以看作等差数列广义的通项公式。

  等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

  若为等差数列,且有a(n)=m,a(m)=n。则a(m+n)=0。

  其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:

  今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?

  书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。

  这相当于给出了S(n)=(a(1)+a(n))/2*n的求和公式。

  等差数列的基本性质

  (1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).

  (2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1);当项数为(2n-1)(n∈ N+)时,S奇—S偶=a(中),S奇-S偶=项数*a(中) ,S奇÷S偶 =n÷(n-1).

  (3)若数列为等差数列,则Sn,S2n -Sn ,S3n -S2n,…仍然成等差数列,公差为n^2d .

  (4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1。

  (5)在等差数列中,S = a,S = b (n>m),则S = (a-b).

  (6)等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.

  (7)记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小.

  (8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)

  r次等差数列

  为什么等差数列的学习中,对公差和首项特别的关注,因为公差和首项可以作为等差数列一切变化的切入点。当我们有更好的切入点后,我们可以毫不犹豫的抛弃公差和首项。

  假设一个基En(x)=[1,x,x^2,。。。,x^k],转换矩阵A为k+1阶方阵,b=[b0,b1,b2,。。。,bk]。b同En的长度一样(k+1)。b'表示b的转置。当k=1时,我们可以称为一次数列。k=r时,我们可以称为r次数列。(x,k只能取自然数)

  p(x)=En(x)*b'

  s(x)=x*En(x)*A*b'

  m+n=p+q(m、n、p、q∈N*)则am+an=ap+aq

本文已影响
网友评论

Copyright © 2006 - 2016 XUEXILA.COM All Rights Reserved

学习啦 版权所有