学习啦 > 学习电脑 > 选购与维护 > 选购指南 > cpu指令集有多少种

cpu指令集有多少种

时间: 林辉766 分享

cpu指令集有多少种

  你知道电脑cpu的指令集有多少种吗?小编来像你介绍!下面由学习啦小编给你做出详细的cpu指令集介绍!希望对你有帮助!

  cpu指令集介绍一

  (1)CISC指令集

  CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。

  要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。

  虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器CPU两类。

  (2)RISC指令集

  RISC是英文“Reduced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本高。并且复杂指令需要复杂的操作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的操作系统UNIX,现在Linux也属于类似UNIX的操作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。

  目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。

  (3)IA-64

  EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得多。

  Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是64位处理器,也是IA-64系列中的第一款。微软也已开发了代号为Win64的操作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处理器,Intel这样做的原因是,它们想摆脱容量巨大的x86架构,从而引入精力充沛而又功能强大的指令集,于是采用EPIC指令集的IA-64架构便诞生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了突破性的提高。

  IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。

  (4)X86-64 (AMD64 / EM64T)

  AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑定址,同时提供转换为32位定址选项;但数据操作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算操作,就要将结果扩展成完整的64位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。

  x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。

  而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位操作系统下的时候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。

  应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供。

  cpu指令集介绍二

  精简指令集 精简指令集,计算机CPU的一种设计模式,也被称为RISC(Reduced Instruction Set Computing 的缩写)。常见的精简指令集微处理器包括AVR、PIC、ARM、DEC Alpha、PA-RISC、SPARC、MIPS、Power架构等。

  早期,这种CPU指令集的特点是指令数目少,每条指令都采用标准字长、执行时间短、CPU的实现细节对于机器级程序是可见的等等。

  实际上在后来的发展中,RISC与CISC在争吵的过程中相互学习,现在的RISC指令集也达到数百条,运行周期也不再固定……虽然如此,RISC设计的根本原则--针对流水线化的处理器优化--没有改变。

  RISC之前的设计原理

  在早期的计算机业中,编译器技术尚未出现。程序是以机器语言或汇编语言完成的。为了便于编写程序,计算机架构师造出越来越复杂的指令,可以高阶程序语言直接陈述高阶功能。当时的看法是硬件比编译器更易设计,所以复杂的东西就加进硬件了。

  加速复杂化的其它因素是缺乏大内存。内存小的环境中,具有极高讯息密度的程序较有利。当内存中的每一字节如此珍贵,例如储存某个完整系统只需几千字节,它使产业移向高度编码的指令、长度不等的指令、执行多个操作的指令,和执行数据传输与计算的指令。当时指令封包问题远比易解的指令重要。

  内存不仅小,而且很慢,打从当时使用磁性技术。这是维持极高讯息密度的其它原因。借着具有极高讯息密度封包,当必须存取慢速资源时可以降低频率。

  CPU只有少数缓存器的两个原因∶

  CPU内部缓存器远贵于外部内存。以当时的集成电路技术水准,大缓存器集对芯片或电路板区域只是多余的浪费。

  具有大数量的缓存器将需要大数量的指令位(使用珍贵的RAM)以做为缓存器指定器。

  基于上述原因,CPU设计师试着令指令尽可能做更多的工作。这导致一个指令将做全部的工作∶读入两个数字,相加,并且直接在内存储存计算结果。其它版本将从内存读取两个数字,但计算结果储存在缓存器。另一个版本将从内存和缓存器各读一个数字,并再次存入内存。以此类推。这种处理器设计原理最终成为复杂指令集(CISC)。

  当时的目标是给所有的指令提供所有的寻址模式,此称为「正交性」。这在 CPU 上导致了一些复杂性,但就理论上每个可能的命令都可以单独的调试(调用,be tuned),这样使得程序员能够比用简单的命令来得更快速。

  这类的设计最终可以由光谱的两端来表达, 6502 在光谱的一端,而 VAX 在光谱的另一端。单价25美元的 1MHz 6502 芯片只有单一的通用缓存器, 但它的极精简的单周期内存界面(single-cycle memory interface)让一个位的操作效能和更高频率设计几乎相同,例如 4MHz Zilog Z80 在使用相同慢速的记忆芯片下(大约近似 300ns)。The VAX was a minicomputer whose initial implementation required 3 racks of equipment for a single cpu, and was notable for the amazing variety of memory access styles it supported, and the fact that every one of them was available for every instruction. The VAX was a minicomputer whose initial implementation required 3 racks of equipment for a single cpu, and was notable for the amazing variety of memory access styles it supported, and the fact that every one of them was available for every instruction.

  RISC设计中常见的特征∶

  统一指令编码(例如,所有指令中的op-code永远位于同样的位位置、等长指令),可快速解译∶

  泛用的缓存器,所有缓存器可用于所有内容,以及编译器设计的单纯化(不过缓存器中区分了整数和浮点数);

  单纯的寻址模式(复杂寻址模式以简单计算指令序列取代);

  硬件中支持少数数据型别(例如,一些CISC计算机中存有处理字节字符串的指令。这在RISC计算机中不太可能出现)。

  RISC设计上同时也有哈佛内存模块特色,凡指令流和数据流在概念上分开;这意味着更改代码存在的内存地址对处理器执行过的指令没有影响(因为CPU有着独立的指令和数据缓存),至少在特殊的同步指令发出前。在另一面,这允许指令缓存和数据缓存同时被访问,通常能改进运行效率。

  许多早期的RISC设计同样共享着不好的副作用——转移延时槽,转移延时槽是指一个跳转或转移指令之后的指令空间。无论转移是否发生,空间中的指令将被执行(或者说是转移效果被延迟)。这些指令让CPU的算术和逻辑单元(ALU)繁忙比通常执行转移所需更多的时间。现在转移延时槽被认为是实现特定RISC设计的副作用,现代的RISC设计通常避免了这个问题(如PowerPC,最近的SPARC版本,MIPS)。

  复杂指令集(CISC)

  例如:Intel的奔腾系列CPU属于复杂指令集CPU,IBM 的PowerPC 970(用于苹果机MAC G5)CPU属于精简指令集CPU。

看了“cpu指令集有多少种 ”文章的还看了:

1.cpu指令集有什么用

2.cpu指令集是怎么意思

3.CPU的处理技术有哪些

4.cpu有多少个核心的

5.什么是cpu有什么功能

6.目前cpu的主频一般是多少

7.cpu有多少晶体管

901111