学习啦 > 论文大全 > 其它论文范文 > 数学系论文范文

数学系论文范文

时间: 斯娃805 分享

数学系论文范文

  在我国数学师范教育转型的关键时期,历史的经验和智慧是一个宝贵的资源。下面是学习啦小编为大家推荐的数学系论文,供大家参考。

  数学系论文范文一:谈数学困难生的辩证施教

  摘要:目前中职生数学学业不良学生的比例很大,如何转化数学学业不良学生便成为教师普遍关注的紧迫课题。文章结合教学实践,提出了要转化数学学业不良现象必须做好的几个方面。

  关键词:困难生;改革模式;辩证施教;学法指导

  初中后期被遗忘了一群孩子基本上都进入中职学习,他们基础差,特别是数学这门学科基础更加差。如何转化数学学业的不良学生便成为了我们教师普遍关注的紧迫课题。这些学生由于缺乏良好学习习惯,不能认真地、持续地听课,有意注意的时间相当短;缺乏正确的数学学习方法,仅仅是简单的模仿、识记;上课时,学习思维跟不上教师的思路,造成不再思维,不再学习的倾向;平时学习中对基础知识掌握欠佳,从而导致在解题时,缺乏条理和依据,造成解题思路的“乱”和“怪”;心理压力较大,不敢请教,怕被人认为“笨”。

  要想打破这个局面,必须做好以下几个方面:

  一、树立所有学生都能教好的观念现代教学观告诉我们,每个人均有独特的天赋和培养价值,关键在于要按照他们所表现出来的天赋,适应其特点进行教育。有材料表明,大多数学业不良学生的某些指标不仅在学生总体中具有中等水平,有的还具有较高水平,这为教

  师端正教学观,改革教育教学工作提供了实证性依据。数学学业不良学生的困难是暂时的,必须承认通过教育的改革,他们能够在原有的基础上得到适当发展。这要求我们:(一)耐心疏导增强主动性。学习困难生在数学学习上既有困难又有潜能,因此教学的首要工作是转变观念,正确地对待学习困难的学生,认真分析学生学习困难的原因,有意识地“偏爱差生”,允许学生数学学习上的反复,从中来激发他们学习数学的自信心。中职生在过去的数学学习中受到鼓励的相当少,因此要积极创造条件让他们获得学习成功的体验,充分地鼓励肯定他们,促使他们对数学产生兴趣,使他们感到自己能学好数学。(二)成功教育树立自信心。数学学业不良是一个相对长期的过程。学生由于在以前的学习中屡遭失败,使他们心灵上受到严重的“创伤”,存在着一种失败者的心态,学习自信心差。教师只有充分相信学生发展的可能性,帮助学生不断成功,提高学生自尊自信的水平,逐步转变失败心态,才能形成积极的自我学习、自我教育的内部动力机制。如实施成功教育,创设成功教育情境,为学业不良学生创造成功的机会。事实上,每个学业不良学生都有自己的理想和抱负,只不过因各种原因冲淡而已。因此,教师必须引导学业不良学生在教师的“成功圈套”中获得能够实现愿望的心理自我暗示效应,从而产生自信心,进而感到经过努力,自己完全可以实现自己的抱负,达到转化数学学业不良学生的目。(三)情感唤起学习热情。数学学业不良学生的转化涉及到生理学、心理学、教育管理、教学论等多个方面。教师不光是知识的传授者,还肩负着促进学生人格健康发展的重任。学业不良学生有

  多方面的需要,其中最迫切的是爱的需要、信任的需要,他们能从教师的一个眼神、一个手势、一个语态中了解到教师对他们的期望。因此,教师要偏爱他们,平时要利用一切机会主动地接近他们,与他们进行心理交流,和他们交朋友。哪怕是对他们的微微一笑,一句口头表扬,一个热情鼓励的目光,一次表现机会的给予,都可能为其提供热爱数学,进而刻苦钻研数学的契机,都会给学生一种无形的力量。

  二、实施“低、多、勤、快”的教学模式。帮助学生树立起学习数学的信心,为他们学好数学准备了条件,但单靠有信心,还是不够的。因此在学生树立起学习数学的自信心后,更重要的工作是创造条件使学习困难的学生真正地学习和掌握数学知识,让他们感到是自己学好了数学。要做到这一点就必须立足于课堂教学的改革,实行“低起点、多归纳、勤练习、快反馈”的课堂教学方法,培养学生学习的能力。(一)低起点——引导学生积极参与。多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习,因此教学的起点必须低。教学中将教材原有的内容降低到学生的起点上,然后再进行正常的教学,教学中主要采用以下几种“低起点”引入法:

  1.直接使用教材中易于接轨的知识作为起点。如 “不等式的性质与证明”、“三角函数”等内容,按教材中引入法为起点。2.以所授内容中最本质的东西作为教学的起点。如在“不等式的解法”教学中,将“区间分析法”作为掌握的重点,并以“区间分析法”为主线进行教学。首先从验证一元一次不等式开始,进而到一元二次不等式、高次不等式、分式不等式的解法。这就是抓住本质降低起点。3.以已学内容的运算法则,基本方法为教学起点。由于数学知识的逐步复杂及深化,原先的数学概念其含意会变化发展,但运算法则不变。例如因式分解的概念随着数域的变化而变化;关于一元二次方程的根的概念,随着数的概念的扩充而发生变化;幂的运算法则,其定义开始在正整数范围内,随着负整数、分数指数和根式的引入,幂指数便扩大到任意实数,其运算法则照常适用。4.以基本原型作为教学的起点。数学概念一般不同于其他概念,对于通过抽象思维活动总结出来的概念,应尽可能通过直观教学。例如棱柱概念的掌握,先让学生观察实物,在具体直观认识的基础上,观察其主要特征,抽象概括出:“有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。这些面所围成的几何体叫做棱柱。”这就是在具体性基础上抽象出来的概念。把抽象的概念具体化,学生感到直观形象,记忆深刻,应用起来也比较方便。5.以已学过的知识、例子作为起点,通过新旧知识的雷同点进行类比教学。如“解不等式”可以与“解方程”进行类比;“解二元二次方程组”可以与“解二元一次方程组”;“分式”可以通过“分数”;“相似形”可通过“全等形”进行类比引入教学。(二)多归纳——总结规律。从学生实际情况出发,教师要多归纳、多总结,使知识系统化、条理化,达到易记好用。如求斜率的四种方法:(1)已知两点求斜率;(2)已知方向向量求斜率;(3)已知倾斜角求斜率;(4)已知直线的一般式求斜率。又如直线的点向式、点法式、点斜式,有一个共同特点,方程中都含有。再通过练习:已知直线经过点A(-3,1),B(1,4),分别用点向式、点法式,点斜式求直线方程。(三)勤练习——及时巩固。学习困难生在课堂教学中有意注意时间较短,因此需要将每节课分成若干个阶段,每个阶段都让自学、讲解、提问、练习、学生小结、教师归纳等形式交替出现,这样可以调节学生的注意力,使学生大量参与课堂学习活动。事实表明:课堂活动形式多了,学生思想开小差、做小动作、讲闲话等现象大大减少了。(四)快反馈——及早纠错。学困生由于长期以来受各种消极因素的影响,数学知识往往需要多次反复才能掌握。这里的“多次反复”就是“多次反馈”。教师对于练习、作业、测验中的问题,应采用集体、个别面批相结合,或将问题渗透在以后的教学过程中等手段进行反馈、矫正和强化。同时还要根据反馈得到的信息,随时调整教学要求、教学进度和教学手段。由于及时反馈,避免了课后大面积补课,提高了课堂教学的效率。“快反馈”既可把学生取得的进步变成有形的事实,使之受到激励,乐于接受下一次学习,又可以通过信息的反馈传递进一步校正或强化。

  三、辩证施教,掌握学习方法。不是努力就能学好数学,但不努力肯定学不好数学。因此如何教以及如何学都得讲究方法。(一)弃重就轻、引发兴趣。中职生从小学到初中再到中职,在数学的学习中,经历过太多的磨难,曾经的挫折为他们的数学学习留下了恐惧的阴影,很多同学有畏惧心理,提到数学就害怕,见到数学就头痛,甚至厌学数学。这种情况下,教师首先要关心他们的生活和思想,以取得他们的信任。而后了解思想上、学习上存在的问题,消除其紧张心理。最后鼓励他们“敢问”、“会问”,激发其学习兴趣。让他们轻松愉快地投入到数学学习中来;还可以结合历届学生成功的事例和现实生活中的实例,帮助他们树立学好数学的信心。(二)开门造车、暴露思维。中职生,尤其是高一新生作业问题很多,书写格式五花八门、条理混乱、交作业拖拖拖拉拉、有难题不合作、否则就是抄作业。他们互不交流、互不讨论、互不合作怎么能学好数学?因此教师要指导他们“开门造车”,暴露学习中的问题,有针对性地指导听课与作业,强化双基训练,对综合题要将问题转化为若干个基础问题,先做若干个基础题,然后做综合题。课堂练习经常开展说题活动,以暴露学生的解题思维过程,逐步提高解题能力。 (三)笨鸟先飞、强化预习。提高课堂学习过程中的数学能力,课前的预习非常重要。教学中,要有针对性地指导学生课前的预习,比如编制预习提纲,对抽象的概念、逻辑性较强的推理、空间想象能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点。认真预习,还可以改变心理状态,变被动学习为主动参与。因此,要求学生强化课前预习,“笨鸟先飞”。(四)固本培元、落实双基。中职生数学知识“先天不足”,要提高数学教学质量,必须重视初高中数学教学的整体性,固本培元,优化数学知识结构。数学能力差,主要表现在对基本知识、基本技能的理解、掌握和应用上。因此,教师要加强总结,使新旧知识系统化,形成知识树。基本技能训练要多周期反复进行,练习题难度易中低水平,训练的形式要多样化,使学生觉得新鲜有趣。通过训练使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用。(五)改进方法、促

  使理解。“上课能听懂,作业有困难”是中职学生共同的“心声”。他们不会自主学习,学习基本上是被动的;在解题方法上只停留于模仿,没有真正理解知识;在数学思考方法上,限于记忆模仿型、思维定式型。实际上模仿例题做习题是数学学习失败的第一大原因,其致命弱点是缺乏对解题方法的“理解”。从学困生的实际出发,我们设计出学生预习例题的步骤:(1)阅读例题;(2)边看边做例题;(3)默做例题,直至能够把例题规范做出来。当教师讲解例题时就能正确理解解题方法。因此,教学必须使学生向探究理解型的认识水平发展,否则不利于高中数学的教与学。

  【参考文献】 [1]张思明.勤学、乐学才能善学[J].中学数学教与学,2001,(2).

  数学系论文范文二:历史上数学和艺术之间的关系及教育思考

  抽象的逻辑演绎、简练的形式表达、对称的结构分布以及永恒的生命力,使得数学对人类文化艺术生活的影响遍及绘画、雕塑、建筑、音乐和文学等诸多方面。与此同时,在对艺术创作的启迪思想和构造方法进行研究的过程中,也催1对于数学概念形象生动的艺术表达方式,如解析几何学。纵览数学和艺术之间的历史关系,恰如19世纪法国文学家福楼拜说的那样,“两者在山麓分手,有朝一日,将在山顶重逢”[1].

  一、历史上数学和艺术之间的关系

  1.古希腊时期的数学和艺术---相伴相生

  西方文明发源于爱琴海西侧的古希腊。古希腊文明的开山鼻祖,数学家、科学家、哲学家、思想家毕达哥拉斯提出了“美在和谐”的观点,他认为只要恰到好处地调整数量比例关系,绘画、雕塑、建筑、音乐、舞蹈等就能产生最美妙的艺术效果。古希腊的艺术发展由此带有深刻的数学烙印,无论是雕塑还是绘画都表现出一种形态匀称、和谐安详的特点。特别值得一提的是,古希腊艺术家在设计作品时特别钟情于遵循“黄金分割”来划分整个画面和安排视觉中心点。1820年在爱琴海的米洛斯岛上出土了着名的古希腊大理石雕像“断臂的维纳斯”,这位爱神的身体各个部分都符合“黄金分割”这一特定的审美标准,成为女性人体艺术的巅峰之作。

  在400多年的古希腊文明时期,数学与艺术基本上处于浑然一体的状态。人们甚至没有严格区分科学与艺术的概念,认为两者理所当然地是自然哲学的两个组成部分。这个时期的一些杰出人物,从早期的苏格拉底、柏拉图、亚里士多德,到后期的欧几里德,都是精通科学与艺术的跨界大师。古希腊文明的最后一位大师,数学家、物理学家、天文学家和哲学家阿基米德在《论球和圆柱》等经典着作中,把欧几里德严格的数学推理与柏拉图丰富的艺术想象和谐地融合在一起,用“穷竭法”导出了许多平面图形的面积和立体图形的体积,成为1800年后“微积分学”的思想源头。

  2.文艺复兴时期的数学与艺术---合作巅峰

  经过了漫长的中世纪,欧洲于13世纪末进入了文艺复兴时期,艺术在人文主义和科学思想的双重影响下蓬勃发展。为达到真实反映现实的目的,画家们面临着一个急待解决的数学问题---如何把三维的现实世界描绘在二维画布上?1435年,意大利画家、建筑学家、数学家、文学家阿尔伯蒂出版了《绘画论》一书,对基于透视几何学的焦点透视画法进行了科学的系统化。他认为大自然是艺术创作的源泉,数学是认识自然的钥匙,艺术的美就是和自然相符合。意大利画家、科学家达·芬奇用艺术家的眼光去观察自然,用科学家的精神去探索自然,深邃的哲理和严密的逻辑使他在艺术和科学上都达到了顶峰。达·芬奇在线透视与色透视的基础上,创立了透视学的第三个分支---空气透视;同时他还创作了许多精美绝伦的透视学作品,其中最优秀的当属《最后的晚餐》。

  透视几何学的诞生和应用,使得数学和艺术的融合达到了一个里程碑式的高度。

  波兰数学家、天文学家、法学家、医生、牧师哥白尼经过长年的观察和计算,在1543年发表的《天体运行论》中提出了“日心说”,沉重打击了教会的宇宙观。近100年后意大利物理学家、天文学家伽利略以《星际使者》《关于太阳黑子的书信》等着作有力地支持了哥白尼的“日心说”,奠定了近代实验科学的基础。哥白尼和伽利略两人的研究成果逐渐瓦解了传统上神学、科学、哲学之间的统一关系,为近代自然科学的发展铺平了道路。

  3.近代思想启蒙运动中的数学和艺术---渐行渐远

  发端于17世纪中叶的思想启蒙运动揭开了欧洲近代史的序幕,启蒙思想家们力求探索推动人类社会不断前进的永恒法则。1665年,英国数学家、物理学家、天文学家、哲学家牛顿,德国数学家、历史学家、法学家、哲学家莱布尼兹各自独立地创立了具有划时代意义的“微积分学”,彻底改变了数学概念绝大多数来源于直观的经验模型的面貌,开始更多地依赖于思维的构造。微积分学随即成为现代物理学、化学、天文学、生物学和地理学等众多自然科学和工程技术的基础理论方法,而且还广泛应用于经济、管理、语言、政治、艺术设计等人文社会科学领域。在微积分的基础上建立起来的点集拓扑学与泛函分析等各个现代数学分支日趋逻辑化和抽象化,也远远走在了所有现代数学应用领域的前列。

  1750年德国美学家、哲学家鲍姆嘉通出版了一本学术专着《美学》,宣告了美学已确立为一门独立学科。他将美学定义为“感性认识的科学”,认为“科学研究的初衷是追求真,而艺术研究的目的是创造美”.与之同时代的德国哲学家、思想家黑格尔在其1817年出版的《哲学全书》中宣称,“艺术的内容就是人们内心的理念,艺术的形式就是诉诸感官的形象”.至此,人们对于数学和艺术更多的是强调它们之间的差异:数学作为自然科学的基础,主要遵循逻辑思维的原则,达到了理性认识的巅峰;而艺术作为人文精神的代表,主要运用形象思维的方式,达到了感性体验的极致。在鲍姆嘉通和黑格尔的指引下,艺术与现代数学都孤单地迈上了相对独立的发展道路4.近现代社会中数学与艺术的重新融合之路==进入20世纪,人类历史翻开了崭新的一页,人们的生活状态和思维方式也发生了深刻的变革。1945年美籍奥地利人、生物学家贝塔朗菲发表了《关于一般系统论》的论文,从此人们开始以整体性的观点来分析系统、要素和环境三者之间的互动联系和变化规律,科学与艺术的基本原理、工作对象、研究方法等各个方面都重新开始互相渗透和融合。就像英国学者马丁·约翰逊在《艺术与科学思维》一书中所指出的那样,“科学家与艺术家,他们虽然岗位不同,但在各自工作中所追求的目标是相通的,他们实际所采用的工作方法比他们实际所承认的有着更多的相同之处”.

  根据思想倾向和艺术风格的不同,20世纪以来西方现代艺术史上形成了各种各样的艺术流派。西班牙画家、雕塑家、剧作家、诗人毕加索的名作《亚威农少女》,引发了立体主义运动的兴起。立体派比较关注如何运用几何原理和数学概念来革新传统的艺术形式,表现生活在迅猛变化的工业社会里的人们内心的期待、躁动、彷徨与失落。而抽象派则尝试打破绘画必须模仿自然的艺术观念,主张以抽象的几何图形为绘画的基本元素,来构造普遍的现象秩序与均衡美感。抽象派的先驱、荷兰画家蒙德里安的代表作品《灰色的树》,通过直线与直角的“纯粹造型”达到了人神统一的“绝对境界”.说到20世纪的艺术界,必须提及荷兰的埃舍尔,他是如此的特立独行,甚至至今都无法将他归属任何一个流派。埃舍尔一生钟情于镶嵌艺术的研究与创作,他从圆、正三角形、正方形、正六边形等基本几何图形出发,连续多次地利用欧氏几何里的反射、平移、伸缩、旋转这四种基本变换,使得基本几何图形扭曲变形为虫、鱼、鸟、兽、人物、花朵、魔鬼与天使等镶嵌图案。

  后来,埃舍尔从读到的非欧几何、拓扑、分形几何等数学思想中再次获得了巨大灵感,使镶嵌艺术达到了鼎盛状态。在埃舍尔创作的那些充满现代数学气息的镶嵌艺术作品中,例如《红蚁》《瀑布》《鱼和鳞》《观景楼》,我们看到了一个个神秘莫测的神话世界。

  如果说,非欧几何直接造就了埃舍尔辉煌的镶嵌艺术,那么分形艺术则充分展示了后现代主义的艺术风格。为了表现变幻的云朵、蜿蜒的河流、神秘的星系和粗糙的断面等自然形态,1975年数学家、计算机专家芒德勃罗出版的《分形:形状、机遇和维数》一书,宣告了分形几何的诞生。在审美情趣与科学内涵完美融合的分形图形中,厚重的思想随着时间消逝,流动的秩序在平面上涌动,主体裂成碎片丧失了中心地位,艺术通过计算机复制走向大众化。虽然分形图形具有复杂的结构,但总是可以利用简单函数无限迭代而成。这个特征使得分形广泛应用于各个艺术领域,尤其是装饰设计方面,如早期的贺卡、壁画、明信片、书籍封面,以及现在的电信卡、购物卡、文化衫、广告画面等。北京服装学院高绪珊教授率领的团队将分形理论应用于纤维制造流程,创造了多维高仿真长丝SFY,使人造纤维呈现出“龙缠柱”般的天然纤维风格。

  二、教育工作者的深度反思---和谐发展

  我们已经截取了西方艺术发展史上四个重要的阶段作为载体,简要地阐述了数学和艺术之间关系的来龙去脉。了解这一点,对于教育工作者有什么实际意义?美籍华裔核物理学家吴健雄曾经指出:“为了避免出现社会可持续发展中的危机,当前一个刻不容缓的问题是消除科学文化和人文文化之间的隔阂,而为加强这两方面的交流和联系,没有比大学更合适的场所了[4].”

  近20年来,教育界的有识之士反复提出这样一个问题:我国作为一个世界“大工厂”拥有庞大的工程师队伍,可是为什么国内大多数行业仍旧处于世界产业链的底端?答案是明显的,我国目前缺少真正意义上的大师级别的科学家和艺术家,既不能开发尖端的突破性的核心技术,也不能设计前卫的独创性的艺术模式。

  那么,为什么会出现这种令人尴尬的局面呢?

  现行教育体制或许应当担负起一定的责任。我国的教育注重知识灌输、忽视能力培养的教学方式姑且不论,还在高中阶段就过早地文理分科,大学阶段专业划分过细,理工科学生不用学习如何欣赏艺术,而艺术类学生也不会主动关注数学。久而久之,在知识结构、认知行为与创造能力等方面产生明显的断裂是必然的。值得欣慰的是,2014年教育部已经宣布了高中不分文理班的政策,这是朝着“理性回归”迈出的第一步。可以期待,未来大学的一二年级将不再划专业,而进行“通识教育”.如此一来,方有可能造就逻辑思维能力和形象思维能力和谐发展的人才。

  数学和艺术的融合,从哲学上讲,源于它们共同的追求---普遍性和永恒性,以及在数学研究和艺术创作过程中共同的付出---智慧和情感。“数学求真,艺术求美”,因为只有真和美才是普遍的和永恒的。古希腊人认为“美是真理的光辉”,美和真实际上是统一的。数学和艺术的融合其实就是“艺术的数学化”和“数学的艺术化”.对于艺术的数学化,大家其实并不陌生。且不说生活中普遍存在的“分形艺术”,美国商业电影《阿凡达》开启了一个广泛意义上的“计算机艺术”的新时代。从键盘输入设计巧妙的数学算法,线条、色彩、形态、结构等艺术元素连续地变换与组合,具有梦幻效果的艺术作品就神奇地显示在屏幕上了。相信这会对现代艺术的创作风格、传播方式和评价体系等方面产生深刻的影响。

  对于数学的艺术化,可以像北京科教频道的纪录片《宇宙大探索》那样,用艺术化的浪漫方式来阐述深奥的宇宙演化理论。在“高等数学”课程的教学过程中,也要尽量把抽象的数学概念和深刻的数学思想进行艺术化的处理,让课堂始终充满着幽默风趣的气氛,激发学生的好奇心和共鸣感。一方面拿一些经典艺术素材来表述,发挥艺术作品形象直观的优势,加强理解的深度和广度。比如在讲授极限理论时,不妨利用俄罗斯套娃来演示无穷数列的变化趋势,然后借用宋代叶绍翁的诗句“满园春色关不住,一枝红杏出墙来”来解释无穷与无界的区别。比如在讲授透视几何时,可以播放一段我国的传统艺术皮影戏来引起学生对于透视原理的兴趣,然后引导学生从数学的角度来欣赏达·芬奇的《最后的晚餐》。再比如讲到傅里叶级数时,先通过计算机播放一段舒缓的贝多芬的《田园交响曲》,让学生观察MediaPlayer上显示的声波的简谐振动,然后让学生课后查阅毕达哥拉斯用数学方法研究音程和音律之间关系后建立的音乐理论。另一方面,要充分挖掘高等数学本身蕴涵的五大审美因素---简洁之美、对称之美、统一之美、奇异之美和运动之美。数学之美是一种通过赏心悦目的数学结构呈现的人类思维方式,是一种超越视听感觉的“抽象美”.要引导学生在学习数学概念、定理的过程中,发现与领略数学之美;在解答或证明数学问题的过程中,追求与创造数学之美,进而对数学产生浓厚的兴趣和强烈的感情。

  三、结语

  数学使我们富于理性,以便冷静地理解这个世界的存在状态和运行模式。艺术让我们富于感性,从而热情地感触这个世界的多姿多彩和永恒魅力。数学和艺术原本相伴相生,后来分道扬镳,现在终于发现对于彼此的依赖。在数学和艺术重新走向融合的道路上,数学和艺术教师可以有所作为。

  参考文献:

  [1]陈桂正.论数学与艺术的相互为用与相互渗透的趋势[J].南京航空航天大学学报:社会科学版,2000,2(4):69-71.

  [2]范忠雄.试论数学与艺术:兼析藏传佛画中的数学美[J].西北民族大学学报:自然科学版,2005,26(3):9-12.

  [3]徐丽丽.大学物理教学中融入中华优秀传统文化的策略研究[D].合肥:合肥工业大学,2011.

  [4]杨耕文,徐本顺.数学与艺术[J].洛阳大学学报,1995,10(2):16-21.

857132