学习啦 > 新闻资讯 > 数码 > 5G通讯技术详解

5G通讯技术详解

时间: 翰华1119 分享

5G通讯技术详解

  在CES2017和MWC2017上都吸睛无数的5G技术,已经成为2017年最热门的词汇之一。然而由于它“技术”的属性,很多网友仍对它有疑惑和不解:什么是5G?和4G有什么区别?什么时候能用上?以及,它是否只是刺激商业市场的一次言过其实的网络提速?学习啦小编想用本篇文章,通过对理论层面通俗的解释和在实践层面厂家产品以及动作的解读,回答两个问题:什么是5G?我们正处于哪个阶段?下面跟着小编一起来看看吧。

  5G通讯技术详解

  抛开技术名词,通俗的理解什么是5G

  5G就是第五代移动网络(cellular networking,也称“蜂窝网络”)。然而,5G目前并没有一个明确的标准和一个确切的定义。但是有一个方面达成了共识,那就是使用“毫米”级的波长(mmWave,也称作“毫米波”)。

  仔细翻看高中物理课本你会回忆起这样一句话“波长越小,频率越高”。我们收听的电台,比如“88.7”,就是频率,意思是这个电台通过88.7 MHz的频率段传递信息。路由器使用的“2.4 GHz”也是频率,意思是通过2.4 GHz的频率段传递信息。毫米波对应的频率段大概是30 GHz到300 GHz。

  但是用高频率段传递信息有什么用呢?研究发现,频率越高,能够承载的信息就越多。所以电台这样87.5 MHz到108.0 MHz的频率段只传递声音信息。而到了2.4 GHz的频率段,声音、图像、视频都能绰绰有余的承载。当达到37 GHz、39 GHz这样高的频率段时,人们预计,做到清晰、流畅、低延时的VR直播不会是问题。

  详解:5G是什么?多久才能来?

  但是高频段也有它的缺点,最为致命的就是穿透性特别差。你可以想一想路由器和收音电台的区别:当隔着几道墙时,路由器信号就有明显的衰减了,而电台的信号却覆盖了一座城市。

  这就意味着5G的普及需要非常多,非常非常多的天线,以克服穿透性差的问题。另外,不管是运营商的设备还是消费者的终端都需要根据这些天线进行改变。

  此外,想要充分发挥5G的优势,不仅仅是从基站到终端的改变,包括笔者在内的很多网友都忽视了一方面:运营商的网络转型。

  5G网络既要应对超高速的移动宽带需求、也要满足智能驾驶和工业物联网设备对稳定性和时延的苛刻要求(注:如果网络数据时延能冲50ms缩短到1ms,就会让一辆时速60km的自动驾驶车辆的反应距离从1m缩短至1.6cm。这会大大的加强此类应用的可用性和安全性。),还要包容海量的物联网设备。这就需要运营商及时调动不同资源予以支持,而现有的架构相对封闭,满足不了5G网络“灵活”和“多样化”的需求。

  5G时代的到来需要从端到端,从内到外的变革。这也是为什么虽然5G预计在2020年才能实现商用的原因之一。

  说回MWC,通过英特尔,来看看我们正处于变革的哪个阶段

  详解:5G是什么?多久才能来?

  简单了解概念只是回答了“什么是5G?”,想要了解5G多久才能来,就需要去关注重点厂商的产品和动作。

  此次选择以“英特尔”在MWC2017的产品和动作为轴,来审视一下我们目前处于这场变革的哪个阶段。原因有二:

  一是我们与英特尔有合作交流,能够获取更多一些关于5G方面的信息。

  二是英特尔同高通、AT&T、华为等一样,确实是5G方面的领先者之一,它在5G领域侧重的“智慧城市”、“无人驾驶”、“虚拟和增强现实”、“万物互联”都是焦点产业,而此次“5G+网络转型”的主题也证明了,它想通过自身,极力的推动这场变革。

  总之,这是一把很好的标尺。

  IT之家详解:5G是什么?多久才能来?

  首先,英特尔此次发布了三类产品:

  一是“第三代移动试验平台”,它能够达到5G标准的低延时以及10Gps数据流的要求。支持3.3-4.2GHz、28GHz和39GHz的频段,对高频段和低频段都有覆盖。

  这个平台主要是做5G的终端,它是一个更快地集成和测试5G设备和无线接入点的高性能开发平台。英特尔目前也正在与全球运营商合作,利用这个新的试验平台进行5G开发、原型设计和测试,并进一步升级这个平台。

  二是“英特尔XMM 7560调制解调器”,14纳米技术制造,高度集成,6模35频(即支持6种通讯模式,35个工作频段),面向下一代LTE Advanced(严格意义上“4G”)设备。

  这个产品就是可以理解成我们常说的手机基带。它的上上一代产品英特尔XMM 7360曾在iPhone7系列上使用。这个产品主要还是着力于4G,可以理解成为5G技术做技术储备。

  三是移动边缘计算产品组合(Mobile Edge Computing, MEC),移动边缘计算主要创造高性能、低延迟与高带宽的网络环境。

  由于人们想在5G时代全面推行”无人驾驶“、”万物互联“等应用,如果只做5G无线技术方面的革新,而运营商不做网络转型,人们所畅想的在5G时代下全面发展的”无人驾驶“、”万物互联“等应用就无法达成和实现。英特尔的这个产品组合服务于就是通讯服务供应商,帮助它们进行网络转型的产品。

  通过这几款产品我们发现,我们其实处在通向5G时代的初期,一个有着大体概念的摸索阶段。产品的思路以进一步开发5G,做技术储备为主。英特尔的这几款产品代表目前还是在为进入5G的变革打基础。

  详解:5G是什么?多久才能来?

  其次,英特尔还宣布了自己的几项动作,主要围绕着“平台”和“互通性”:

  与爱立信联手推出5G创新者计划,聚焦工业物联网;与诺基亚合作设立了两个5G解决方案的实验室,以测试和加快新无线技术的商业就绪,支持5G服务的发展;AT&T合作共同推动物联网设备快速上市、获得认证并接入网络。

  与爱立信实现第一个Pre-5G空中无线互通性,对应用层面不同产品、系统之间的相互配合提供了解决办法;参与了诺基亚第一个符合5GTF接口的连接的发布,对之后商用制定标准有推动作用。

  通过这几个动作可以看到,以英特尔为例的行业领先者“抱团合作”,为更多的企业能够加入5G的变革提供平台和资源。我们虽然处在通向5G时代的初期,但却是在一个“加速度”的状态,越来越多的力量融入到行业领先者建立的平台和团队里。

  通过总结,我们发现5G时代还需要几年才能到来,我们仍处于通向5G时代的初期,但是势头正盛。以英特尔为代表的行业领先者,通过自身的产品以及行动,引领着更多厂商进入到这场变革中来。

  你还记得你使用2G网络或3G网络时是什么样子吗?当经历了2G到3G,3G到4G的体验之后,我们有理由期待5G带给我们更多的可能性。

  4G通信技术介绍

  第四代移动电话行动通信标准,指的是第四代移动通信技术,外语缩写:4G。该技术包括TD-LTE和FDD-LTE两种制式(严格意义上来讲,LTE只是3.9G,尽管被宣传为4G无线标准,但它其实并未被3GPP认可为国际电信联盟所描述的下一代无线通讯标准IMT-Advanced,因此在严格意义上其还未达到4G的标准。只有升级版的LTE Advanced才满足国际电信联盟对4G的要求)。

  4G是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像等。4G能够以100Mbps以上的速度下载,比目前的家用宽带ADSL(4兆)快25倍,并能够满足几乎所有用户对于无线服务的要求。此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。很明显,4G有着不可比拟的优越性。

  产生背景

  随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第四代移动通信开始兴起,因此有理由期待这种第四代移动通信技术给人们带来更加美好的未来。另一方面,4G也因为其拥有的超高数据传输速度,被中国物联网校企联盟誉为机器之间当之无愧的“高速对话”。

  发展历史

  研发阶段

  2001年12月~2003年12月,开展Beyond 3G/4G蜂窝通信空中接口技术研究,完成Beyond 3G/4G系统无线传输系统的核心硬、软件研制工作,开展相关传输实验,向ITU提交有关建议;

  2004年1月~2005年12月,使Beyond 3G/4G空中接口技术研究达到相对成熟的水平,进行与之相关的系统总体技术研究(包括与无线自组织网络、游牧无线接入网络的互联互通技术研究等),完成联网试验和演示业务的开发,建成具有Beyond 3G/4G技术特征的演示系统,向ITU提交初步的新一代无线通信体制标准;

  2006年1月~2010年12月,设立有关重大专项,完成通用无线环境的体制标准研究及其系统实用化研究,开展较大规模的现场试验。[1]

  运行阶段

  2010年是海外主流运营商规模建设4G的元年,多数机构预计海外4G投资时间还将持续3年左右。

  2012年国家工业和信息化部部长苗圩表示:4G的脚步越来越近,4G牌照在一年左右时间中就会下发。

  2013年,"谷歌光纤概念"开始在全球发酵,在美国国内成功推行的同时,谷歌光纤开始向非洲、东南亚等地推广,给全球4G网络建设再次添柴加火。同年8月,国务院总理李克强日前主持召开国务院常务会议,要求提升3G网络覆盖和服务质量,推动年内发放4G牌照。12月4日正式向三大运营商发布4G牌照,中国移动、中国电信和中国联通均获得TD-LTE牌照,不过中国联通和中国电信热切期待的FDD-LTE牌照,暂未发放。[2-3]

  2013年12月18日,中国移动在广州宣布,将建成全球最大4G网络。2013年年底前,北京、上海、广州、深圳等16个城市可享受4G服务;预计到2014年年底,4G网络将覆盖超过340个城市。[4]

  2014年1月,京津城际高铁作为全国首条实现移动4G网络全覆盖的铁路,实现了300公里时速高铁场景下的数据业务高速下载,一部2G大小的电影只需要几分钟。原有的3G信号也得到增强。[5]

  2014年1月20日,中国联通已在珠江三角洲及深圳等十余个城市和地区开通42M,实现全网升级,升级后的3G网络均可以达到42M标准,同时将在今年年内完成全国360多个城市和大部分地区3G网络的42M升级。

  2014年7月21日中国移动在召开的新闻发布会上又提出包括持续加强4G网络建设、实施清晰透明的订购收费、大力治理垃圾信息等六项服务承诺。中移动表示,将继续降低4G资费门槛。[6]

  截至2015年12月底,全国电话用户总数达到15.37亿户,其中移动电话用户总数13.06亿户,4G用户总数达3.86225亿户,4G用户在移动电话用户中的渗透率为29.6%。[7]

  核心技术

  接入方式和多址方案

  (正交频分复用)是一种无线环境下的高速传输技术,其主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个

  4G

  4G

  子载波进行调制,各子载波并行传输。尽管总的信道是非平坦的,即具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM技术的优点是可以消除或减小信号波形间的干扰,对多径衰落和多普勒频移不敏感,提高了频谱利用率,可实现低成本的单波段接收机。OFDM的主要缺点是功率效率不高。

  调制与编码技术

  4G移动通信系统采用新的调制技术,如多载波正交频分复用调制技术以及单载波自适应均衡技术等调制方式,以保证频谱利用率和延长用户终端电池的寿命。4G移动通信系统采用更高级的信道编码方案(如Turbo码、级连码和LDPC等)、自动重发请求(ARQ)技术和分集接收技术等,从而在低Eb/N0条件下保证系统足够的性能。

  高性能的接收机

  4G移动通信系统对接收机提出了很高的要求。Shannon定理给出了在带宽为BW的信道中实现容量为C的可靠传输所需要的最小SNR。按照Shannon定理,可以计算出,对于3G系统如果信道带宽为5MHz,数据速率为2Mb/s,所需的SNR为l.2dB;而对于4G系统,要在5MHz的带宽上传输20Mb/s的数据,则所需要的SNR为12dB。可见对于4G系统,由于速率很高,对接收机的性能要求也要高得多。

  智能天线技术

  智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。这种技术既能改善信号质量又能增加传输容量。

  MIMO技术

  (多输入多输出)技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将通信链路分解成为许多并行的子信道,从而大大提高容量。信息论已经证明,当不同的接收天线和不同的发射天线之间互不相关时,MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。例如:当接收天线和发送天线数目都为8根,且平均信噪比为20dB时,链路容量可以高达42bps/Hz,这是单天线系统所能达到容量的40多倍。因此,在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。在无线频谱资源相对匮乏的今天, MIMO系统已经体现出其优越性,也会在4G移动通信系统中继续应用。

  软件无线电技术

  软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。软件无线电的核心思想是在尽可能靠近天线的地方使用宽带A/D和D/A变换器,并尽可能多地用软件来定义无线功能,各种功能和信号处理都尽可能用软件实现。其软件系统包括各类无线信令规则与处理软件、信号流变换软件、信源编码软件、信道纠错编码软件、调制解调算法软件等。软件无线电使得系统具有灵活性和适应性,能够适应不同的网络和空中接口。软件无线电技术能支持采用不同空中接口的多模式手机和基站,能实现各种应用的可变QoS。

  基于IP的核心网

  移动通信系统的核心网是一个基于全IP的网络,同已有的移动网络相比具有根本性的优点,即:可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

  多用户检测技术

  多用户检测是宽带通信系统中抗干扰的关键技术。在实际的CDMA通信系统中,各个用户信号之间存在一定的相关性,这就是多址干扰存在的根源。由个别用户产生的多址干扰固然很小,可是随着用户数的增加或信号功率的增大,多址干扰就成为宽带CDMA通信系统的一个主要干扰。传统的检测技术完全按照经典直接序列扩频理论对每个用户的信号分别进行扩频码匹配处理,因而抗多址干扰能力较差;多用户检测技术在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号信息对单个用户的信号进行检测,从而具有优良的抗干扰性能,解决了远近效应问题,降低了系统对功率控制精度的要求,因此可以更加有效地利用链路频谱资源,显著提高系统容量。随着多用户检测技术的不断发展,各种高性能又不是特别复杂的多用户检测器算法不断提出,在4G实际系统中采用多用户检测技术将是切实可行的。[8]

  网络结构

  4G移动系统网络结构可分为三层:物理网络层、中间环境层、应用网络层。物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。中间环境层的功能有QoS映射、地址变换和完全性管理等。

  物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。[9]

  4G特点

  优势

  通信速度快

  由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信给人印象最深刻的特征莫过于它具有更快的无线通信速度。

  从移动通信系统数据传输速率作比较,第一代模拟式仅提供语音服务;第二代数位式移动通信系统传输速率也只有9.6Kbps,最高可达32Kbps,如PHS;第三代移动通信系统数据传输速率可达到2Mbps;而第四代移动通信系统传输速率可达到20Mbps,甚至最高可以达到高达100Mbps,这种速度会相当于2009年最新手机的传输速度的1万倍左右,第三代手机传输速度的50倍。

  网络频谱宽

  要想使4G通信达到100Mbps的传输,通信营运商必须在3G通信网络的基础上,进行大幅度的改造和研究,以便使4G网络在通信带宽上比3G网络的蜂窝系统的带宽高出许多。据研究4G通信的AT&T的执行官们说,估计每个4G信道会占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

  通信灵活

  从严格意义上说,4G手机的功能,已不能简单划归“电话机”的范畴,毕竟语音资料的传输只是4G移动电话的功能之一而已,因此未来4G手机更应该算得上是一只小型电脑了,而且4G手机从外观和式样上,会有更惊人的突破,人们可以想象的是,眼镜、手表、化妆盒、旅游鞋,以方便和个性为前提,任何一件能看到的物品都有可能成为4G终端,只是人们还不知应该怎么称呼它。

  未来的4G通信使人们不仅可以随时随地通信,更可以双向下载传递资料、图画、影像,当然更可以和从未谋面的陌生人网上联线对打游戏。也许有被网上定位系统永远锁定无处遁形的苦恼,但是与它据此提供的地图带来的便利和安全相比,这简直可以忽略不计。

  智能性能高

  第四代移动通信的智能性更高,不仅表现于4G通信的终端设备的设计和操作具有智能化,例如对菜单和滚动操作的依赖程度会大大降低,更重要的4G手机可以实现许多难以想象的功能。

  例如4G手机能根据环境、时间以及其他设定的因素来适时地提醒手机的主人此时该做什么事,或者不该做什么事,4G手机可以把电影院票房资料,直接下载到PDA之上,这些资料能够把售票情况、座位情况显示得清清楚楚,大家可以根据这些信息来进行在线购买自己满意的电影票;4G手机可以被看作是一台手提电视,用来看体育比赛之类的各种现场直播。LG G3支持双卡,支持2014年的主流4G,并内置可拆卸式3000毫安时电池。[10]

  兼容性好

  要使4G通信尽快地被人们接受,不但考虑的它的功能强大外,还应该考虑到现有通信的基础,以便让更多的现有通信用户在投资最少的情况下就能很轻易地过渡到4G通信。

  因此,从这个角度来看,未来的第四代移动通信系统应当具备全球漫游,接口开放,能跟多种网络互联,终端多样化以及能从第二代平稳过渡等特点。

  提供增值服务

  4G通信并不是从3G通信的基础上经过简单的升级而演变过来的,它们的核心建设技术根本就是不同的,3G移动通信系统主要是以CDMA为核心技术,而4G移动通信系统技术则以正交多任务分频技术(OFDM)最受瞩目,利用这种技术人们可以实现例如无线区域环路(WLL)、数字音讯广播(DAB)等方面的无线通信增值服务;不过考虑到与3G通信的过渡性,第四代移动通信系统不会在未来仅仅只采用OFDM一种技术,CDMA技术会在第四代移动通信系统中,与OFDM技术相互配合以便发挥出更大的作用,甚至未来的第四代移动通信系统也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。

  因此未来以OFDM为核心技术的第四代移动通信系统,也会结合两项技术的优点,一部分会是以CDMA的延伸技术。

  高质量通信

  尽管第三代移动通信系统也能实现各种多媒体通信,为此未来的第四代移动通信系统也称为“多媒体移动通信。

  第四代移动通信不仅仅是为了因应用户数的增加,更重要的是,必须要因应多媒体的传输需求,当然还包括通信品质的要求。总结来说,首先必须可以容纳市场庞大的用户数、改善现有通信品质不良,以及达到高速数据传输的要求。

  频率效率高

  相比第三代移动通信技术来说,第四代移动通信技术在开发研制过程中使用和引入许多功能强大的突破性技术,例如一些光纤通信产品公司为了进一步提高无线因特网的主干带宽宽度,引入了交换层级技术,这种技术能同时涵盖不同类型的通信接口,也就是说第四代主要是运用路由技术(Routing)为主的网络架构。

  由于利用了几项不同的技术,所以无线频率的使用比第二代和第三代系统有效得多。

  按照最乐观的情况估计,这种有效性可以让更多的人使用与以前相同数量的无线频谱做更多的事情,而且做这些事情的时候速度相当快。研究人员说,下载速率有可能达到5Mbps到10Mbps。

  费用便宜

  由于4G通信不仅解决了与3G通信的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端的通信技术,这些技术保证了4G通信能提供一种灵活性非常高的系统操作方式,因此相对其他技术来说,4G通信部署起来就容易迅速得多;同时在建设4G通信网络系统时,通信营运商们会考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运行者和用户的费用。据研究人员宣称,4G通信的无线即时连接等某些服务费用会比3G通信更加便宜。

  对于人们来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来发明的最复杂的技术系统。的确,第四代无线通信网络在具体实施的过程中出现大量令人头痛的技术问题,大概一点也不会使人们感到意外和奇怪。第四代无线通信网络存在的技术问题多和互联网有关,并且需要花费好几年的时间才能解决。

  缺陷

  标准多

  虽然从理论上讲,3G手机用户在全球范围都可以进行移动通信,但是由于没有统一的国际标准,各种移动通信系统彼此互不兼容,给手机用户带来诸多不便。因此,开发第四代移动通信系统必须首先解决通信制式等需要全球统一的标准化问题,而世界各大通信厂商会对此一直在争论不休。

  技术难

  尽管未来的4G通信能够给人带来美好的明天,现已研究出来,但并未普及。据研究这项技术的开发人员而言,要实现4G通信的下载速度还面临着一系列技术问题。

  例如,如何保证楼区、山区,及其它有障碍物等易受影响地区的信号强度等问题。日本DoCoMo公司表示,为了解决这一问题,公司会对不同编码技术和传输技术进行测试。另外在移交方面存在的技术问题,使手机很容易在从一个基站的覆盖区域进入另一个基站的覆盖区域时和网络失去联系。

  [11] 由于第四代无线通信网络的架构相当复杂,这一问题显得格外突出。

  不过,行业专家们表示,他们相信这一问题可以得到解决,但需要一定的时间。

  容量受限

  人们对未来的4G通信的印象最深的莫过于它的通信传输速度会得到极大提升,从理论上说其所谓的每秒100Mbps的宽带速度(约为每秒12.5MB),比2009年最新手机信息传输速度每秒10KB要快1000多倍,但手机的速度会受到通信系统容量的限制,如系统容量有限,手机用户越多,速度就越慢。据有关行家分析,4G手机会很难达到其理论速度。如果速度上不去,4G手机就要大打折扣。

  市场难以消化

  有专家预测在10年以后,第三代移动通信的多媒体服务会进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上人口使用第三代移动通信系统,第三代技术仍然在缓慢地进入市场,到那时整个行业正在消化吸收第三代技术,对于第四代移动通信系统的接受还需要一个逐步过渡的过程。

  另外,在过渡过程中,如果4G通信因为系统或终端的短缺而导致延迟的话,那么号称5G的技术随时都有可能威胁到4G的赢利计划,此时4G漫长的投资回收和赢利计划会变得异常的脆弱。

  设施更新慢

  在部署4G通信网络系统之前,覆盖全球的大部分无线基础设施都是基于第三代移动通信系统建立的,如果要向第四代通信技术转移的话,那么全球的许多无线基础设施都需要经历着大量的变化和更新,这种变化和更新势必减缓4G通信技术全面进入市场、占领市场的速度。

  而且到那时,还必须要求3G通信终端升级到能进行更高速数据传输及支持4G通信各项数据业务的4G终端,也就是说4G通信终端要能在4G通信网络建成后及时提供,不能让通信终端的生产滞后于网络建设。但根据某些事实来看,在4G通信技术全面进入商用之日算起的二三年后,消费者才有望用上性能稳定的4G通信手机。

  其他

  因为手机的功能越来越强大,而无线通信网络也变得越来越复杂,同样4G通信在功能日益增多的同时,它的建设和开发也会遇到比以前系统建设更多的困难和麻烦。

  例如每一种新的设备和技术推出时,其后的软件设计和开发必须及时能跟上步伐,才能使新的设备和技术得到很快推广和应用,但遗憾的是4G通信还只处于研究和开发阶段,具体的设备和用到的技术还没有完全成型,因此对应的软件开发也会遇到困难;另外费率和计费方式对于4G通信的移动数据市场的发展尤为重要,例如WAP手机推出后,用户花了很多的连接时间才能获得信息,而按时间及信息内容的收费方式使用户难以承受,因此必须及早慎重研究基于4G通信的收费系统,以利于市场发展。

  4G性能

  第四代移动通信系统可称为广带 (Broadband) 接入和分布网络,具有非对称的超过2Mb/s的数据传输能力,数据率超过UMTS,是支持高速数据率(2~20Mb/s)连接的理想模式,上网速度从2Mb/s提高到

  3G与4G

  3G与4G

  100Mb/s,具有不同速率间的自动切换能力。

  第四代移动通信系统是多功能集成的宽带移动通信系统,在业务上、功能上、频带上都与第三代系统不同,会在不同的固定和无线平台及跨越不同频带的网络运行中提供无线服务,比第三代移动通信更接近于个人通信。第四代移动通信技术可把上网速度提高到超过第三代移动技术50倍,可实现三维图像高质量传输。

  4G移动通信技术的信息传输级数要比3G移动通信技术的信息传输级数高一个等级。对无线频率的使用效率比第二代和第三代系统都高得多,且抗信号衰落性能更好,其最大的传输速度会是 “i-mode”服务的10000倍。除了高速信息传输技术外,它还包括高速移动无线信息存取系统、移动平台的拉技术、安全密码技术以及终端间通信技术等,具有极高的安全性,4G终端还可用作诸如定位、告警等。

  4G手机系统下行链路速度为100mbps,上行链路速度为30mbps。其基站天线可以发送更窄的无线电波波束,在用户行动时也可进行跟踪,可处理数量更多的通话。

  第四代移动电话不仅音质清晰,而且能进行高清晰度的图像传输,用途会十分广泛。在容量方面,可在FDMA、TDMA、CDMA的基础上引入空分多址 (SDMA),容量达到3G的5~10倍。另外,可以在任何地址宽带接入互联网,包含卫星通信,能提供信息通信之外的定位定时、数据采集、远程控制等综合功能。它包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统)。

  其广带无线局域网 (WLAN) 能与B-ISDN和ATM兼容,实现广带多媒体通信,形成综合广带通信网 (IBCN),通过IP进行通话。能全速移动用户能提供150Mb/s的高质量的影像服务,实现三维图像的高质量传输,无线用户之间可以进行三维虚拟现实通信。

  能自适应资源分配,处理变化的业务流、信道条件不同的环境,有很强的自组织性和灵活性。能根据网络的动态和自动变化的信道条件,使低码率与高码率的用户能够共存,综合固定移动广播网络或其他的一些规则,实现对这些功能体积分布的控制。

  支持交互式多媒体业务,如视频会议、无线因特网等,提供更广泛的服务和应用。4G系统可以自动管理、动态改变自己的结构以满足系统变化和发展的要求。用户可能使用各种各样的移动设备接入到4G系统中,各种不同的接入系统结合成一个公共的平台,它们互相补充、互相协作以满足不同的业务的要求,移动网络服务趋于多样化,最终会演变为社会上多行业、多部门、多系统与人们沟通的桥梁。

  4G标准

  LTE

  LTE (Long Term Evolution,长期演进) 项目是3G的演进,它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准。根据4G牌照发布的规定,国内三家运营商中国移动、中国电信和中国联通,都拿到了TD-LTE制式的4G牌照。

  主要特点是在20MHz频谱带宽下能够提供下行100Mbit/s与上行50Mbit/s的峰值速率,相对于3G网络大大的提高了小区的容量,同时将网络延迟大大降低:内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,从驻留状态到激活状态的迁移时间小于100ms。并且这一标准也是3GPP长期演进 (LTE) 项目,是近两年来3GPP启动的最大的新技术研发项目,其演进的历史如下:

  GSM-->GPRS-->EDGE-->WCDMA-->HSDPA/HSUPA-->HSDPA+/HSUPA+-->FDD-LTE长期演进

  GSM:9K -->GPRS:42K--> EDGE:172K -->WCDMA:364k -->HSDPA/HSUPA:14.4M -->HSDPA+/HSUPA+:42M -->FDD-LTE:300M

  由于WCDMA网络的升级版HSPA和HSPA+均能够演化到FDD-LTE这一状态,所以这一4G标准获得了最大的支持,也将是未来4G标准的主流。TD-LTE与TD-SCDMA实际上没有关系不能直接向TD-LTE演进。该网络提供媲美固定宽带的网速和移动网络的切换速度,网络浏览速度大大提升。

  LTE终端设备当前有耗电太大和价格昂贵的缺点,按照摩尔定律测算,估计至少还要6年后,才能达到当前3G终端的量产成本。

  LTE-Advanced

  LTE-Advanced:从字面上看,LTE-Advanced就是LTE技术的升级版,那么为何两种标准都能够成为4G标准呢?LTE-Advanced的正式名称为 Further Advancements for E-UTRA,它满足 ITU-R的IMT-Advanced技术征集的需求,是3GPP形成欧洲IMT-Advanced技术提案的一个重要来源。LTE-Advanced是 一个后向兼容的技术,完全兼容LTE,是演进而不是革命,相当于HSPA和WCDMA这样的关系。LTE-Advanced的相关特性如下:

  带宽:100MHz

  峰值速率:下行1Gbps,上行500Mbps

  峰值频谱效率:下行30bps/Hz,上行15bps/Hz

  针对室内环境进行优化

  有效支持新频段和大带宽应用

  峰值速率大幅提高,频谱效率有限的改进

  如果严格的讲,LTE作为3.9G移动互联网技术,那么LTE-Advanced作为4G标准更加确切一些。LTE-Advanced的入围,包含 TDD和FDD两种制式,其中TD-SCDMA将能够进化到TDD制式,而WCDMA网络能够进化到FDD制式。移动主导的TD-SCDMA网络期望能够 直接绕过HSPA+网络而直接进入到LTE。

  WiMax

  WiMax:WiMax (Worldwide Interoperability for Microwave Access),即全球微波互联接入,WiMAX的另一个名字是IEEE 802.16。WiMAX的技术起点较高,WiMax所能提供的最高接入速度是70M,这个速度是3G所能提供的宽带速度的30倍。

  对无线网络来说,这的确是一个惊人的进步。WiMAX逐步实现宽带业务的移动化,而3G则实现移动业务的宽带化,两种网络的融合程度会越来越高,这也是未来移动世界和固定网络的融合趋势。

  802.16工作的频段采用的是无需授权频段,范围在2GHz至66GHz之间,而802.16a则是一种采用2G至11GHz无需授权频段的宽带无线接入系统,其频道带宽可根据需求在1.5M至20MHz范围进行调整,具有更好高速移动下无缝切换的IEEE 802.16m的技术正在研发。因此,802.16所使用的频谱可能比其它任何无线技术更丰富,WiMax具有以下优点:

  (1)对于已知的干扰,窄的信道带宽有利于避开干扰,而且有利于节省频谱资源。

  (2)灵活的带宽调整能力,有利于运营商或用户协调频谱资源。

  (3)WiMax所能实现的50公里的无线信号传输距离是无线局域网所不能比拟的,网络覆盖面积是3G发射塔的10倍,只要少数基站建设就能实现全城覆盖,能够使无线网络的覆盖面积大大提升。

  不过WiMax网络在网络覆盖面积和网络的带宽上优势巨大,但是其移动性却有着先天的缺陷,无法满足高速(≧50km/h)下的网络的无缝链接,从这个意义上讲,WiMax还无法达到3G网络的水平,严格地说并不能算作移动通信技术,而仅仅是无线局域网的技术。

  但是WiMax的希望在于IEEE 802.11m技术上,将能够有效的解决这些问题,也正是因为有中国移动、英特尔、Sprint各大厂商的积极参与,WiMax成为呼声仅次于LTE的4G网络手机。关于IEEE 802.16m这一技术,我们将留在最后作详细的阐述。

  Wimax当前全球使用用户大约800万,其中60%在美国。Wimax其实是最早的4G通信标准,大约出现于2000年。

  Wireless MAN

  WirelessMAN-Advanced:WirelessMAN- Advanced事实上就是WiMax的升级版,即IEEE 802.16m标准,802.16系列标准在IEEE正式称为WirelessMAN ,而WirelessMAN-Advanced即为IEEE 802.16m。其中,802.16m最高可以提供1Gbps无线传输速率,还将兼容未来的4G无线网络。802.16m可在“漫游”模式或高效率/强信号模式下提供1Gbps的下行速率。该标准还支持“高移动”模式,能够提供1Gbps速率。其优势如下:

  1.提高网络覆盖,改建链路预算;

  2.提高频谱效率;

  3.提高数据和VOIP容量;

  4.低时延&QoS增强;

  5.功耗节省;

  WirelessMAN-Advanced有5种网络数据规格,其中极低速率为16kbps,低数率数据及低速多媒体为144kbps,中速多媒 体为2Mbps,高速多媒体为30Mbps超高速多媒体则达到了30Mbps--1Gbps。

  但是该标准可能会被率先被军方所采用,IEEE方面表示军方 的介入将能够促使WirelessMAN-Advanced更快的成熟和完善,而且军方的今天就是民用的明天。不论怎样,WirelessMAN- Advanced得到ITU的认可并成为4G标准的可能性极大。

  国际标准

  2012年1月18日下午5时,国际电信联盟在2012年无线电通信全会全体会议上,正式审议通过将LTE-Advanced和WirelessMAN-Advanced(802.16m)技术规范确立为IMT-Advanced(俗称“4G”)国际标准,中国主导制定的TD-LTE-Advanced和FDD-LTE-Advance同时并列成为4G国际标准。

  4G国际标准工作历时三年。从2009年初开始,ITU在全世界范围内征集IMT-Advanced候选技术。2009年10月,ITU共计征集到了六个候选技术,分别来自北美标准化组织IEEE的802.16m、日本3GPP的FDD-LTE-Advance、韩国(基于802.16m)和中国(TD-LTE-Advanced)、欧洲标准化组织3GPP(FDD-LTE-Advance)。

  4G国际标准公布有两项标准分别是LTE-Advance和IEEE,一类是LTE-Advance的FDD部分和中国提交的TD-LTE-Advanced的TDD部分,总基于3GPP的LTE-Advance。另外一类是基于IEEE 802.16m的技术。

  ITU在收到候选技术以后,组织世界各国和国际组织进行了技术评估。在2010年10月份,在中国重庆,ITU-R下属的WP5D工作组最终确定了IMT-Advanced的两大关键技术,即LTE-Advanced和802.16m。中国提交的候选技术作为LTE-Advanced的一个组成部分,也包含在其中。在确定了关键技术以后,WP5D工作组继续完成了电联建议的编写工作,以及各个标准化组织的确认工作。此后WP5D将文件提交上一级机构审核,SG5审核通过以后,再提交给全会讨论通过。

  在此次会议上,TD-LTE正式被确定为4G国际标准,也标志着中国在移动通信标准制定领域再次走到了世界前列,为TD-LTE产业的后续发展及国际化提供了重要基础。

  日本软银、沙特阿拉伯STC、mobily、巴西sky Brazil、波兰Aero2等众多国际运营商已经开始商用或者预商用TD-LTE网络。印度Augere预计2012年2月开始预商用。审议通过后,将有利于TD-LTE技术进一步在全球推广。同时,国际主流的电信设备制造商基本全部支持TD-LTE,而在芯片领域,TD-LTE已吸引17家厂商加入,其中不乏高通等国际芯片市场的领导者。

  速率对比

  无线蜂窝技术:CDMA2000 1x/EVDo;GSM EDGE;TD-SCDMA HSPA;WCDMA HSPA;TD-LTE;FDD-LTE

  4G网络的下行速率能达到100Mbps~150Mbps,比3G快20倍~30倍,上传的速度也能达到20Mbps~40Mbps。这种速率能满足几乎所有用户对于无线服务的要求。有人曾这样比较3G和4G的网速,3G的网速相当于“高速公路”,4G的网速相当于“磁悬浮”。

  多模多频芯片

  支持LTE/3G多模多频是LTE终端的明确发展方向,也是国内运营商的发展思路。目前国内某些运营商已经公开表示将建设TDD/FDD融合组网,这对多模多频也提出了很高要求。[12] 中国移动也多次强调,TDD/FDD混合组网、支持5模10频、5模12频及Band 41是中国移动发展LTE智能终端的重点。[13]

  关于多模多频,业界普遍认为频段不统一是当今全球LTE终端设计的最大障碍——当前,全球2G、3G 和4G LTE网络频段的多样性对移动终端开发构成了挑战。全球2G和3G技术各采用4到5个不同的频段,加上4G LTE,网络频段的总量将近40个。要支持多模多频,首先就需要终端集成能同时支持多种制式和频段的芯片。

  芯片标准

  从4G芯片的发展来看,4G芯片应该具备高度集成、多模多频、强大的数据与多媒体处理能力。全球4G手机大多数采用高通的芯片。博通、Marvell、英特尔、联发科、联芯科技、创毅视讯、展迅、海思等芯片厂商也有4G基带芯片产品推出,主要运用于MIFI、CPE等数据终端中。

  在2013年8月初最新公布的中国移动2013年度TD-LTE终端采购的芯片使用上,采用高通芯片的比例超过60%,甚至有的预期称可能会占到中国移动2013年所有采购的4G终端产品的70%左右。

  高通的LTE芯片强调高集成度和多模多频支持,高通所有LTE芯片组均同时支持LTETDD和LTE FDD,而在LTE/3G多模方面,以第三代调制解调器Gobi MDM9x25为例,支持LTERel10、HSPA+ Rel10、1x/DO、TD-SCDMA、GSM/EDGE;此外强调“高集成”和“单芯片”的骁龙800系列处理器也集成了Gobi 9x25调制解调方案。而目前有超过150款采用高通第三代调制解调方案的智能终端正在研发中。 此外,2013年年初推出的RF360前端解决方案还首次实现单个终端支持所有LTE制式和频段的设计,支持七种网络制式(FDD、TD-LTE、WCDMA、EV-DO、CDMA1x、TD-SCDMA和GSM/EDGE)。

3677036