学习啦>学习方法>初中学习方法>初二学习方法>八年级数学>《八年级上册数学勾股定理的应用》正文

八年级上册数学勾股定理的应用

时间:2018-08-23 14:50:35本文内容及图片来源于读者投稿,如有侵权请联系xuexila888@qq.com 曾扬 我要投稿

  对于立体图形的最短路径问题,我们一般是利用"横切"或"展开"等手段,将其转换到平面图形中解决,而这种情形不免会在直角三角形中解决,也自然会和勾股定理扯上关系。

  最短路径问题

  初中阶段我们学过三种路径最值问题,

  一是两点之间线段最短;

  二是将军饮马问题;

  三是直线外一点与直线上一点的连线中,垂线段最短.

八年级上册数学勾股定理的应用

  除些之外我们扩展一个线段最大值问题:

八年级上册数学勾股定理的应用

  当然,还有很多线段最值问题,待到九年级时会相应扩展的.我们言归正传,回到今天所讲勾股定理在线段最值问题中的应用,还有实际生活中的应用;

  蚂蚁爬之路径最短值问题,这类问题一般不能用"两点之间线段最短"来解决,而是先展开,再利用此公理来解决;

  方法总结:1.展开,2.找点,3,连线,用勾股定理求线段长

  例:

八年级上册数学勾股定理的应用

  例2:展开方法不唯一,就要进行对比

八年级上册数学勾股定理的应用

  例3:多次展开

八年级上册数学勾股定理的应用

  例4:实际应用问题

八年级上册数学勾股定理的应用

  总结:此类题目一般确定一个量,例如高度或者宽度,去计算能通过的最大的宽度或高度.

  例5语文理解题

八年级上册数学勾股定理的应用

【八年级数学】图文推荐

Copyright @ 2006 - 2018 学习啦 All Rights Reserved

学习啦 版权所有 粤ICP备15032933号-1

我们采用的作品包括内容和图片全部来源于网络用户和读者投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系:xuexila888@qq.com,我站将及时删除。

学习啦 学习啦

回到顶部