浙教版七年级数学期末复习试卷
数学考试前最重要的是做练习题,巩固所学的知识。那么浙教版七年级数学期末复习试卷有哪些?下面是学习啦小编分享给大家的七年级数学期末复习试卷,希望大家喜欢!
七年级数学期末复习试卷一
一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)
1.任意画一个三角形,它的三个内角之和为
A. 180° B.270° C.360° D.720°
2.下列命题中,真命题的是
A.相等的两个角是对顶角
B.若a>b,则 >
C.两条直线被第三条直线所截,内错角相等
D.等腰三角形的两个底角相等
3.下列各计算中,正确的是
A.a3÷a3 =a B.x3+x3=x6
C.m3•m3 =m6 D.(b3)3=b6
4.如图,已知AB// CD//EF,AF∥CG,则图中与∠A(不包括∠A)相
等的角有
A.5个 B.4个
C.3个 D.2个
5.由方程组 ,可得到x与y的关系式是
A.x+y=9 B.x+y=3
C.x+y=-3 D.x+y=-9
6.用四个完全一样的长方形(长、宽分别设为x、y)拼成如图所示的大正方
形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列
关系式中不正确的是
A.x+y=6 B.x-y=2
C.x•y=8 D.x2+y2=36
7.用长度为2cm、3cm、4cm、6cm的小木棒依次首尾相连(连接处可活动,损耗长度不计),构成一个封闭图形ABCD,则在变动其形状时,两个顶点间的最大距离为
A.6cm B.7cm C.8cm D.9cm
8.若3×9m×27m=321,则m的值是
A.3 B.4 C.5 D.6
9.如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为
A.α+β-γ=180° B.α+γ=β
C.α+β+γ=360° D.α+β-2γ=180°
10.若二项式4m2+9加上一个单项式后是一个含m的完全平方式,则这
样的单项式共有,
A.2个 B.3个 C.4个 D.5个
二、填空题(本大题共8小题,每小题3分,共24分)
11.化简 .
12.“同位角相等,两直线平行”的逆命题是 .
13.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2= °.
14.已知x-y=4,x-3y=1,则x2-4xy+3y2的值为 .
15.已知二元方程x-y=1,若y的值大于-1,则x的取值范围是 .
16.如图,已知∠AOD=30°,点C是射线OD上的一个动点.在点C的运动过程中,△AOC恰好是等腰三角形,则此时∠A所有可能的度数为 °.
17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=30°,则∠ABF的度数为 .
18.若关于x的不等式2+2x
三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)
19.计算题(本题共2小题,每小题4分,共8分)
(1) (2)
20.因式分解(本题共2小题,每小题4分,共8分)
(1)2a3-8a (2)x3-2x2y+xy2
21.(本题共6分)解不等式组 并判断x=- 是否为该不等式组的解.
22.(本题共6分)如图,点D在AB上,直线DG交AF于点E.请从①DG∥AC,(AF平分∠BAC,③AD=DE中任选两个作为条件,余下一个作为
结论,构造一个真命题,并说明理由.
已知: ,求证: .(只须填写序号)
23.(本题共7分)如图,九宫格中填写了一些数字和未知数,使得每行
3个数、每列3个数和斜对角的3个数之和均相等.
(1)通过列方程组求x、y的值;
(2)填写九宫格中的另外三个数字.
24.(本题共8分)如图①,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.
(1) ∠BPD= °;
(2)如图②,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED=150°,求∠BPD的度数:并进一步猜想∠BPD与∠BED之间的数量关系.
25.(本题共8分)如果关于x、y的二元方程组 的解x和y的绝对值相等,求a的值.
26.(本题共8分)基本事实:“若ab=0,则a=0或b=0”.一元二次方程x2-x-2=0可通过因式分解化为(x-2)(x+1)=0,由基本事实得x-2=0或x+1=0,即方程的解为x=2和x=-1.
(1)试利用上述基本事实,解方程:2x2-x=0:
(2)若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.
27.(本题共9分)为了科学使用电力资源,我市对居民用电实行“峰谷”计费:8:00~21:00为峰电价,每千瓦时0.56元;其余时间为谷电价,每千瓦时0.28元,而不实行“峰谷”计费的电价为每千瓦时0.52元.小丽家某月共用电200千瓦时.
(1)若不按“峰谷”计费的方法,小丽家该月原来应缴电费 元;
(2)若该月共缴电费95.2元,求小丽家使用“峰电”与“谷电”各多少千瓦时?
(3)当峰时用电量小于总用电量的几分之几时,使用“峰谷”计费法比原来的方法合算?
28.(本题共8分)“数形结合”是一种极其重要的思想方法.例如,我们可以利用数轴解分式不等式 <1(x≠0).先考虑不等式的临界情况:方程 =1的解为x=1.如图,数轴上表示0和1的点将数轴“分割”成x<0、01三
部分(0和1不算在内),依次考察三部分的数可得:当x<0和x>1时, <1成立.
理解上述方法后,尝试运用“数形结合”的方法解决下列问题:
(1)分式不等式 >1的解集是 ;
(2)求一元二次不等式x2-x<0的解集;
(3)求绝对值不等式 >5的解集.
七年级数学期末复习试卷二
一、选择题(本大题12小题,每小题3分,共36分)
1. 下列说法中,正确的是( )
A.两条射线组成的图形叫做角
B.有公共端点的两条线段组成的图形叫做角
C.角可以看作是由一条射线绕着它的端点旋转而形成的图形
D.角可以看作是由一条线段绕着它的端点旋转而形成的图形
2.若点A(2,n)在x轴上,则点B(n+2,n-5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.直角三角形两锐角的平分线相交所夹的钝角为( )
A.125° B.135° C.145° D.150°
4.如果方程组 的解为 ,那么 “★”“■”代表的两个数分别为( )
A.10,4 B.4,10 C.3,10 D.10,3
5.如果一个多边形的每个内角都相等,且内角和为1440°,则这个多边形的外角是( )
A.30° B.36° C.40° D.45°
6. 某人到瓷砖商店去购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( )
A.正三角形 B.正四边形 C.正六边形 D.正八边形
7.如图1,能判定EB∥AC的条件是( )
A.∠C=∠ABE B.∠A=∠EBD
C.∠C=∠ABC D.∠A=∠ABE
8.下列式子变形是因式分解,并且分解正确的是( )
A.x2-5x+6=x(x-5)+6
B.x2-5x+6=(x-2)(x-3)
C.(x-2)(x-3)=x2-5x+6
D.x2-5x+6=(x+2)(x+3)
9. 若(ax+3y)2=4x2-12xy+by2,则a、b的 值分别为( )
A.-2, 9 B.2,-9 C.2, 9 D.-4, 9
10.若□×3xy=3x2y,则□内应填的单项式是( )
A.xy B.3xy C.x D.3x
11. 图2是一个长为2a,宽为2b(a>b)的长方形, 用剪刀沿图中虚线(对称轴)剪开,把它分成四个形状和大小都一样的小长方形,然后按图3那样拼成一个正方形,则中间空的部分的面积是( )
A.2ab B.(a+b)2
C.(a-b)2 D.a2-b2
12. 下列说法中,结论错误的是( )
A.直径相等的两个圆是等圆
B.长度相等的两条弧是等弧
C.圆中最长的弦是直径
D.一条弦把圆分成两条弧,这两条弧可能是等弧
二、填空题(每小题3分,共24分)
13.直角坐标系中,第二象限内一点P到x轴的距离为4,到y轴的距离为6,那么点P的坐标是 _________
14.某超市账目记录显示,第一天卖出39支牙刷和21盒牙膏,收入396元;第二天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是 ____ 元.
15. 一个多边形的内角和等于它的外角和的4倍,那么这个多边形是______边形.
16.如图4已知直线a∥b,若∠1=40°50′,则∠2=________.
17.等腰三角形两边的长分别为5cm和6cm,则它的周长为 .
18. ab=3,a-2b=5,则a2b-2ab2的值是 .
19.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如下图所示.按照这样的规律,摆第(n)个图,需用火柴棒的根数为 .
20.如图5, C岛在B岛的北偏西48°方向,∠ACB等于95°,则C
岛在A岛的 方向.
三、解答题(共60分)
21. (本题满分10分,每小题5分)阅读下面的计算过程:
(2+1)(22+1)(24+1)
=(2-1)(2+1)(22+1)(24+1)
=(22-1)(22+1)(24+1)
=(24-1)(24+1)
=(28-1).
根据上式的计算方法,请计算
22. (本题满分12分)
(1)分解因式
(2)已知a+b=5,ab=6,求下列各式的值:
① ②
23.(6分) 先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y= .
24.(8分) 如图6,从边长为a的正方 形
纸片中剪去一个边长为b的小正方
形,再沿着线段AB剪开,把剪成的
两张纸片拼成如图7的等腰梯形.
(1)设图6中阴影部分面积为S1,图7
中阴影部分面积为S2,请结合图形直接用含a,b 的代数式分别表示S1、S2;
(2)请写出上述过程所揭示的乘法公式.
25. (8分) 将一副三角板拼成如图8所示的图形,
过点C作CF平分∠DCE交DE于点F.
(1)求证:CF∥AB;
(2)求∠DFC的度数.
26. (8分) 列方程组解应用题:
机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?
27. (8分)
已知:如图9所示的网格中,△ ABC的
顶点A的坐标为(0,5).
(1)根据A点的坐标在网格中建立平面直角
坐标系,并写出点B、C两点的坐标.
(2)求S△ABC
参考答案
一、选择1-6CDBABD 7-12DBACCB 二、13.6-4) 14.528 15.10
16.139°10′, 17.16或17 18.15 19. 6n+2 20.北偏东47°
三、21.(1) (2) 22.(1) (2) ①13 ②7
23. 原式=x2-y2-2x2+4y2=-x2+3y2.
当x=-1,y= 时,原式=-(-1)2+3×( )2= .
24. (1)S1=a2-b2,S2= ( 2b+2a)(a-b)=(a+b)(a-b).
(2)(a+b)(a-b)=a2-b2.
25. 解:(1)证明:∵CF平分∠DCE,∴∠1=12∠DCE=12×90°=45°,∴∠3=∠1,∴AB∥CF(内错角相等,两直线平行)
(2)∵∠1=∠2=45°,∠E=60°,∴∠DFC=45°+60°=105°
26. 解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,
由题意得, , .
答:安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.
27 .解:(1)图略 B(-2,2), C(2,3) (2)S△ABC=5
七年级数学期末复习试卷三
一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)
1.下列运算正确的是( )
A. 3﹣2=6 B. m3•m5=m15 C. (x﹣2)2=x2﹣4 D. y3+y3=2y3
2.在﹣ 、 、π、3.212212221…这四个数中,无理数的个数为( )
A. 1 B. 2 C. 3 D. 4
3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选( )
A. 10cm B. 30cm C. 50cm D. 70cm
4.下列语句中正确的是( )
A. ﹣9的平方根是﹣3 B. 9的平方根是3
C. 9的算术平方根是±3 D. 9的算术平方根是3
5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售( )
A. 6折 B. 7折 C. 8折 D. 9折
6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有( )
A. 4个 B. 3个 C. 2个 D. 1个
二、填空题(每小题3分,共30分)
7.﹣8的立方根是 .
8.x2•(x2)2= .
9.若am=4,an=5,那么am﹣2n= .
10.请将数字0.000 012用科学记数法表示为 .
11.如果a+b=5,a﹣b=3,那么a2﹣b2= .
12.若关于x、y的方程2x﹣y+3k=0的解是 ,则k= .
13.n边形的内角和比它的外角和至少大120°,n的最小值是 .
14.若a,b为相邻整数,且a<
15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2= °.
16.若不等式组 有解,则a的取值范围是 .
三、解答题(本大题共10小条,102分)
17.计算:
(1)x3÷(x2)3÷x5
(x+1)(x﹣3)+x
(3)(﹣ )0+( )﹣2+(0.2)2015×52015﹣|﹣1|
18.因式分解:
(1)x2﹣9
b3﹣4b2+4b.
19.解方程组:
20.解不等式组: ,并在数轴上表示出不等式组的解集.
21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;
若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.
22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.
(1)请在图中画出平移后的′B′C′;
△ABC的面积为 ;
(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)
猜你喜欢: