学习啦>学习方法>各学科学习方法>数学学习方法>

初中数学学习的一般方法

时间: 慧良1230 分享

  成功=艰苦的劳动+正确的方法+少说空话。对于渴望成功的同学来说,艰苦的劳动与少说空话是比较容易做到的,而正确的方法却不是每个人都能摸索得出来的。小编整理了数学学习相关内容,希望能帮助到您。

  初中数学学习的一般方法

  一、初中数学学习的一般方法:

  1.突出一个“勤”字(克服一个“惰”字)

  数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”

  “勤能补拙是良训,一分辛劳一分才:

  我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字

  “聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)

  “口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”

  “手勤”(动手多实践,不仅光做题,做课件,做模型)

  这样的人聪明不聪明?

  最大的提高学习效率,首先要做到——上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识

  2.学好初中数学还有两个要点,要狠抓两个要点:

  学好数学,一要(动手),二要(动脑)。

  动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么

  动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)

  同学就是“题不离手”,这两个要点大家要记住。

  “动脑又动手,才能最大地发挥大脑的效率”

  3.做到“三个一遍”

  大家听过“失败是成功之母”听过“重复是学习之母”吗?

  培根(18-19世纪英国的哲学家)——“知识就是力量”

  “重复是学习之母”

  如何重复,我给你们解释一下:

  “上课要认真听一遍,动手推一遍,想一遍”

  “下课 看”

  “考试前 ”

  4.重视“四个依据”

  读好一本教科书——它是教学、中考的主要依据;

  记好一本笔记——它是教师多年经验的结晶;

  做好做净一本习题集——它是使知识拓宽;

  记好一本心得笔记,最好每人自己准备一本错题集

  二、分课前、课上、课后三个方面来谈一谈数学的学习。

  1.课前做什么,预习。有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。其实预习非但不浪费时间,而且有很大的益处。首先,预习是对自己自学能力的锻炼。老师不可能教给你全部的知识,很多的知识都是靠自己自学得到的,这就需要我们有良好的自学能力。其次,通过自己预习得到的要比通过上课听老师讲得到的印象要深刻的多。

  那该如何预习,预习些什么内容呢?第一,要看课本,看课本上的基本概念和基本例题,对这部分内容要做到理解。因为这就是基础,万变不离其宗,后面的任何变化都离不开这个基础。第二,在理解基本概念的基础上完成课后的随堂练习。因为通过什么来检测你是否理解了概念,只有通过题目。课后的随堂练习的设置就是理解基本概念后的简单的运用。如果预习的过程中有不懂的地方,要在书上做好记号,上课时就要着重听这部分内容;如果内容简单,自己能理解,那上课时就要听老师是如何讲解的,和自己对照一下,看看自己的理解是否正确,或者看看有没有其他的解题思路

  2.课上做什么,认真听讲。听课是学习中最重要的环节,是准确的掌握所学知识的关键。课上认真听十分钟胜过课后自己看书三十分钟。那么上课该如何认真听讲,听什么。第一、带着在预习中未懂的问题听课,注意力集中,尽可能把疑点在课中解决。

  第二,对于在预习中认为弄懂了的问题,主要听老师的讲解是否和自己的理解一致,纠正自己在预习中对一些知识的片面理解或错误理解。

  第三,在预习中没有弄懂的问题,通过老师讲懂了或还有疑问,要在课堂上把关键的地方记下来,课后要及时进行向老师请教,弄懂、弄明白。

  第四,在听课中注意不能只听问题的答案,关键是听老师讲解例题的解题思路,明白了解题思路,你是学会了做这一类题,而不是只是一道题。

  例题是为巩固数学知识而讲,例题的作用是举一反三。有人做过这样一个实验:

  一个老师带着一个初一班,他每周都测验他的学生,而且公开告诉他的学生,考题全部他上课讲的例题。学生开始一片哗然,90%的学生有信心拿满分,只有班上几个最差的学生不敢这么说,很快第一次测验结果出来了,及格率48%,满分率不到8%,第二次情况有所好转,初一时这个班数学成绩与同年级数学特长班平均分相差12.5分。初二时与数学班只差1.5分,比年级平均分高10分。初三毕业,这个班几乎与数学特长班没有区别。

  第五,注意听老师在课堂中补充的例题,这些例题通常具有代表性,听老师的解题思路,拓宽自己的知识,要学会自己可以动手解决这一类问题。

  3.课后该怎么做,完成练习和作业。要学好数学,必须多做练习,但并不是题海战术。只顾看书,而不做或少做练习,是不可能学好数学的。而一味的做题,而不顾解题方法,也是很难在学习上收到成效的。

  做练习要在有充分的准备之后,认真独立地完成。所谓有充分准备,就是要先复习今天所学的知识和老师补充的例题,把课本上的知识弄懂之后才能做练习。如果课本知识还有不懂之处,应先复习课文,询问同学或老师,直至懂了之后再做练习。

  所谓认真,是指对每个习题都要认真思考,对问题的每个细节都应思考清楚。注意养成一个全面细致地思考问题的习惯。这种良好习惯一旦养成,它会在你的一生中大有益处。另一方面,要认真演算,注意解答表述的条理性和解题格式的规范性。许多同学常常在考试中马虎出错,究其根源,必然形成马马虎虎的坏习惯。而“马虎”会长久地带来危害,这种坏习惯一旦养成,十分顽固,很难克服。

  所谓独立完成作业,就是要靠自己的能力完成作业。因为做练习的目的,一是巩固所学知识,二是检查对知识的理解是否正确,培养和提高分析解决问题的能力。

  要敢于啃难题。遇到难题一定要反复仔细推敲条件,深入思考,在山穷水尽、自己能力确实承受不了的情况下,问问别人是可以的,不要一觉得难,就不想做了。当然,做难题要耗费较长的时间。有些同学以为这样做不合算,不如问问省事,这种想法是不全面的。其实,帐得算两笔,比如你由于解难题耗费的时间较长联想过很多知识,设想了很多解法,都失败了,似乎收获是“零”,但事实上,你获得了大量的“副产品”,而这“副产品“的价值会远远大于本题目的价值。因为,由于解题的迫切需要联想了很多知识,恰好是对这许许多多知识积极的复习;你想出了很多方法,虽然没有能解决这个题目,但它是很好的思维训练,对提高思维能力起到了不可低估的作用,况且这一个个方法很可能在解决其他题目上奏效。大数学家希尔伯特把“费尔马大定理”这道难题叫做“能下金蛋的母鸡”。正是因为有很多数学家在攻克“费尔马大定理”的失败中,发现和开创了许多新的数学领域,大大地推进了数学的发展。

  对于数学《评价手册》:学习教吃力的同学只要完成基本题就可以了,中等的同学完成辨析与反思;好的同学加上探索与思考;还有额外学习能力的同学可以选择好一本课外书,自己挑选部分习题、能够巩固所学知识并拓展知识面的,在做题时尽量讲究一题多解,发展自己分析问题和解决问题的能力。

  做过的题目希望大家一段时间(一周之类)要消化,对于这类题目的解题方法要掌握,争取做到举一反三,触类旁通,在练习当中,我认为“做”是次要的,而“思”是主要的。出错的地方也正是我们学习中最薄弱的地方,把这些地方弄懂弄通,避免在同一地方摔倒二次,这比把十道习题演算正确收效也许更大一些。

  4.复习与总结。复习是为了巩固,和遗忘做斗争;总结是为了条理知识,发现、掌握规律,积累经验,有所提高。

  学完每一章,要及时做好阶段复习。阶段复习要围绕每一节知识的重点、难点,阅读教材、听课笔记、练习本,从中提炼出本章的知识重点和难点,特别对于曾不大懂和理解错误或不够深度的地方,要着重复习巩固。凡是在作业或测验中不会做或做错了的题目,在阶段复习中要独立做一遍,检查一下对这些题目自己是否已经掌握。有些同学多次在某一类问题上出现错误,或曾不会做的题目,再考时仍不会做,正是没有完成复习任务的结果。较难的知识与题日,不仅难做、难理解,而且很容易忘。反复复习的本身,则是与遗忘作斗争的有效方法。阶段总结是十分必要的,通过阶段复习,应该有较大的提高。华罗庚有句名言:“读书要由薄到厚,再由厚到薄”。阶段总结,正是要完成由厚到薄的过程。总结要提炼出每一章知识的重点、难点,每一小节知识的重点与本章知识重点的联系,做出条理性的归纳和概括,从而积累解题经验,提高分析解题的能力。

  5.课外自学与研究。课外自学与研究的目的是扩大知识面,开阔眼界,掌握与积累思维方法和解题方法,进一步提高分析解题能力。围绕所学的教材进度看一些课外参考书及数学杂志,作一些较新鲜或难度较大的习题。课外自学应该是有计划地有节制地进行,不要影响以上环节的学习,更不要影响其它学科的学习。在课外自学的过程中,发现一些新颖而有价值的习题、一些好地思维方法与解题方法,应该记下来,以便进一步学习掌握。

  爱因斯坦说过:“成功==艰苦的劳动+正确的方法+少说空话”。对于渴望成功的同学来说,艰苦的劳动与少说空话是比较容易做到的,而正确的方法却不是每个人都能摸索得出来的。……学习方法因人而异,望大家,“择其善者而从之,其不善者而改之”。务使你拥有一套适合自己的学习方法。

  初中数学学习两大复习策略

  第一梳理策略

  总结梳理,提炼方法。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。

  如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。梳理了题型就可以进一步探索解题规律。

  同时也可以换角度进行思考,如一个任意的三角形可以剪拼成平行四边形或矩形,最少需几条剪切线?联想到任意四边形可以剪拼成哪些特殊图形,任意梯形可以剪拼成哪些特殊图形等。做题时,要注重发现题与题之间的内在联系,通过比较,发现规律,做到触类旁通。

  反思错题,提升能力。在备考期间,要想降低错误率,除了进行及时修正、全面扎实复习之外,非常关键的一个环节就是反思错题,具体做法是:将已复习过的内容进行“会诊”,找到最薄弱部分,特别是对月考、模拟试卷出现的错误要进行认真分析,也可以将试卷进行重新剪贴、分类对比,从中发现自己复习中存在的共性问题。

  正确分析问题产生的原因,例如,是计算马虎,还是法则使用不当;是审题不仔细,还是对试题中已知条件或所求结论理解有误;是解题思路不对,还是定理应用出错等等,消除某个薄弱环节比做一百道题更重要。应把这些做错的习题和不懂不会的习题当成再次锻炼自己的机会,找到了问题产生的原因,也就找到了解题的最佳途径。

  事实上,如果考前及时发现问题,并且及时纠正,就会越快地提高数学能力。对其中那些反复出错的问题可以考虑再做一遍,自己平时害怕的题、容易出错的题要精做,以绝后患。并且要静下心来,通过学习、回忆,而有所思,有所悟,便会有所发现、有所提高、有所创新,便能悟出道理、悟出规律。

  第二答题策略

  首先,审题时注意力要集中,思维应直接指向试题,力争做到眼到、心到、手到。审题时,应弄清已知条件、所求结论,同时在短时间内汇集有关概念、公式、定理,用综合法、或分析法、或两头凑的方法,探索解题途径。特别注意已知条件所设的陷阱,仔细审题,认真分析是否该分类讨论,以免丢解。

  其次,在答题顺序上,应逐题进行解答。要正确迅速地完成选择题和填空题,有效利用时间,为顺利完成中档题和压轴题奠定基础。在逐题进行解答时,遇到一时解不出的题应先放下(别忘了做记号,以免落题),把会解的题目都做完后,再回来把留下的疑难逐一解决。

  第三,遇到平时没见过的题目,不要慌,稳定好情绪。题目貌似异常,其实都出自原本。要冷静回想它与平时见过的题目、书本中的知识有哪些关联。要相信自己的功底,多方寻找思路,便能豁然得释。切忌对着题发呆不敢下手,有时动笔做一做或者画一画,就图形进行相应地分析,也就做出来了。尽可能解答一步是一步,不放过多得一分的机会。

  第四,解综合题时,应步步为营,稳扎稳打,否则前面错了,后面即使方法对了,也得分甚少。

  最后,注意认真检查,如感觉某题答错了,不能盲目去改,要十分冷静地重新审题,仔细研究,确定此时思路正确,再动笔去改,因为此时易把正确的改错了,尽量减少失误。




初中数学知识点总结

一元一次方程定义

通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0。

一元一次方程的五个核心问题

一、什么是等式?1+1=1是等式吗?

表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质

(1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;

(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

二、什么是方程,什么是一元一次方程?

含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

三、等式有什么牛掰的基本性质吗?

将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

四、等式一定是方程吗?方程一定是等式吗?

等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

五、"解方程"与"方程的解"是一回事儿吗?

方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。



初中数学学习的一般方法相关文章

初中数学学习方法

初中生必须掌握的初中数学学习方法

初中数学学习方法总结,数学的六大方法技巧!

初中数学学习方法介绍

初中数学有效学习方法

经典的初中数学学习方法

初中数学常用教学方法有哪些

关于初中数学学习有什么好方法

初中数学如何学好的方法

初中生数学的学习方法指导

初中数学学习的一般方法

成功=艰苦的劳动+正确的方法+少说空话。对于渴望成功的同学来说,艰苦的劳动与少说空话是比较容易做到的,而正确的方法却不是每个人都能摸索得出来的。小编整理了数学学习相关内容,希望能帮助到您。
推荐度:
点击下载文档文档为doc格式
119763