学习啦>学习方法>备考资料>

八年级上册数学复习知识提纲沪科版

时间: 自畅0 分享

数学复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,下面小编给大家分享一些八年级上册数学复习提纲沪科版,希望能够帮助大家,欢迎阅读!

八年级上册数学复习知识提纲沪科版

(一)运用公式法

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。

全等三角形的性质:全等三角形对应边相等、对应角相等。

全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的'边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

①列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

3)将原多项式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.

(九)含有字母系数的一元一次方程

含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

怎样快速提高数学成绩

一、调整心态,制定计划

很多学生在刚开始进入复课阶段后出现焦虑、紧张、压力过大的情况,从而使自己很难全身心投入到备考状态。这个时候建议大家多鼓励自己,给自己进行心理暗示:我能行!对自己要充满信心。其次,你要制定一个复习的计划,计划应当安排对知识点做回顾和整理以及专题训练。由于高考数学一般安排在下午,所以安排每天下午三点到五点进行数学做题训练。学好数学最重要的是做题和思考,长期的坚持一定会带给你意想不到的收获。

二、定义理解很重要,做题才是最关键

很多学生在复习的时候会遇到这样的情况:明明将书上的知识点已经全部记下了,公式定义也都能默写下来,可是一到做题就什么都不会。这就是数学的难点之在,数学主要考验的是人的思维逻辑,熟记定义和公式虽重要,但是最容易理解一个知识点的方法是通过做题。建议大家在遇到难以理解的定义时,不妨找几个相关知识点的题来做一下,这样或许更有利于加深你对定义的理解。拿三角函数来说,这部分内容对于中等以下水平的学生来说学起来有点费劲,所以很多人总是重复的看定义,但是每当拿到题目时却无从下手,所以在理解定义的同时一定要灵活运用定义,多做题总结经验

数学中考冲刺方法

1、专题复习、选好复习资料

根据近几年中考试卷的结构,以下几个专题必须要研究:图表信息类、阅读创新类、动手操作类、规律探索类、压轴类。

2、归纳反思,提高能力

每学完一个专题后要认真反思,反思的方法——总结解题思路、归纳解题的方法、由这道题可以想到哪道类型的题的解法等等。由这道题想到自己的薄弱环节等等。

3、不必贪大求全。

对各能力点逐一过关,每节课都要有目标、要有针对性,不要只顾及复习的面而不关注细节。要就一论一,打好基础关,求实求细,力求在基础知识点上不丢分。

八年级上册数学复习提纲沪科版相关文章

沪科版八年级上册数学复习提纲

八年级上册数学沪科版复习提纲

沪科版八年级数学上册知识点

八年级数学知识点沪科版

八年级上册数学复习资料

八年级上册数学总复习知识点

八年级数学沪科版知识点

八年级上册数学复习提纲整理

八年级上册数学复习提纲2020

初中数学知识点总结(沪科版)

八年级上册数学复习知识提纲沪科版

数学复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,下面小编给大家分享一些八年级上册数学复习提纲沪科版,希望能够帮助大家,欢迎阅读!八年级上册数学复习提纲沪科版(一)运用公式法我们知道整式
推荐度:
点击下载文档文档为doc格式

精选文章

  • 北师大版八年级上册数学提纲
    北师大版八年级上册数学提纲

    数学毫无疑问是科学的基础,想要学好数学也是有一定难度的,你是不是需要一份数学提纲呢?下面小编给大家分享北师大版八年级上册数学提纲,希望能够

  • 人教版八年级上册数学提纲
    人教版八年级上册数学提纲

    数学是中考的一项重要内容,学好数学能够帮助我们提高总成绩。下面小编给大家分享一些人教版八年级上册数学提纲,希望能够帮助大家,欢迎阅读!人教

  • 数学八年级下册复习提纲
    数学八年级下册复习提纲

    步入初中,随着知识点的增多,越来越多的初中生表示数学很难,其实你要学会做复习提纲,以下是小编给大家整理的数学八年级下册复习提纲,希望对大

  • 数学八年级上册复习提纲
    数学八年级上册复习提纲

    想要学好数学就要课后及时复习.写完作业后对当天老师讲的内容进行梳理,做好知识提纲,以下是小编给大家整理的数学八年级上册复习提纲,希望对大家

1117853